Social network sentiment classification method combined Chinese text syntax with graph convolutional neural network
نویسندگان
چکیده
منابع مشابه
UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment Classification
This paper describes our deep learning system for sentiment analysis of tweets. The main contribution of this work is a process to initialize the parameter weights of the convolutional neural network, which is crucial to train an accurate model while avoiding the need to inject any additional features. Briefly, we use an unsupervised neural language model to initialize word embeddings that are ...
متن کاملWord Embeddings and Convolutional Neural Network for Arabic Sentiment Classification
With the development and the advancement of social networks, forums, blogs and online sales, a growing number of Arabs are expressing their opinions on the web. In this paper, a scheme of Arabic sentiment classification, which evaluates and detects the sentiment polarity from Arabic reviews and Arabic social media, is studied. We investigated in several architectures to build a quality neural w...
متن کاملCombining Convolutional Neural Networks and Word Sentiment Sequence Features for Chinese Text Sentiment Classification
Combining Convolutional Neural Networks and Word Sentiment Sequence Features for Chinese Text Sentiment Classification Zhao Chen1, Ruifeng Xu1, Lin Gui1, Qin Lu2 (1. School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, 518000, China; 2. Depart of Computing, The Hong Kong Polytechnic University, Hong Kong, China) Abstract: Recen...
متن کاملGraph Based Convolutional Neural Network
In this paper we present a method for the application of Convolutional Neural Network (CNN) operators for use in domains which exhibit irregular spatial geometry by use of the spectral domain of a graph Laplacian, Figure 1. This allows learning of localized features in irregular domains by defining neighborhood relationships as edge weights between vertices in graph G. By formulating the domain...
متن کاملTensor graph convolutional neural network
In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute graphs. Especially, we propose a graph preserving layer to memorize salient nodes of those factorized subgraphs, i.e. cross graph convolution and grap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Egyptian Informatics Journal
سال: 2021
ISSN: 1110-8665
DOI: 10.1016/j.eij.2021.04.003